latesttechnology world

Tuesday, 21 February 2017

Smart Materials

                      Smart Materials


Science and technology have made amazing developments in the design of electronics and machinery using standard materials, which do not have particularly special properties (i.e. steel, aluminum, gold). Imagine the range of possibilities, which exist for special materials that have properties scientists can manipulate. Some such materials have the ability to change shape or size simply by adding a little bit of heat, or to change from a liquid to a solid almost instantly when near a magnet; these materials are called smart materials. 


Image result for smart materials



SHAPE MEMORY ALLOYS
              
       Shape memory alloys (SMA's) are metals, which exhibit two very unique properties, pseudo-elasticity, and the shape memory effect. Arne Olander first observed these unusual properties in 1938 (Oksuta and Wayman 1998), but not until the 1960's were any serious
research advances made in the field of shape memory alloys. The most effective and widely used alloys include NiTi (Nickel - Titanium), CuZnAl, and CuAlNi.







Image result for smart materials

HOW SHAPE MEMORY ALLOYS WORK

The two unique properties described above are made possible through a solid state phase change, that is a molecular rearrangement, which occurs in the shape memory alloy. Typically when one thinks of a phase change a solid to liquid or liquid to gas change is the first idea that comes to mind. A solid state phase change is similar in that a molecular rearrangement is occurring, but the molecules remain closely packed so that the substance remains a solid. In most shape memory alloys, a temperature change of only about 10°C is necessary to initiate this phase change. The two phases, which occur in shape memory alloys, are Martensite, and Austenite



Martensite, is the relatively soft and easily deformed phase of shape memory alloys, which exists at lower temperatures. The molecular structure in this phase is twinned which is the configuration shown in the middle of Figure .Upon deformation this phase takes on the second form ,on the right. Austenite, the stronger phase of shape memory alloys, occurs at higher temperatures.. The un-deformed Martensite phase is the same size and shape as the cubic Austenite phase on a macroscopic scale, so that no change in size or shape is visible in shape memory alloys until the Martensite is deformed.Image result for smart materialsImage result for smart materials

2 comments:

  1. Also I think that this blog will be useful for all mechanicians. SeriousElectricians.com.au

    ReplyDelete
  2. hi dear its very nice and very helpful post for those who are new and thinking to start a blog site.Your posts are very helpful and creative. I have atlast opened a blog site being inspired from your articles clik here and see about inverter

    ReplyDelete